A homogeneous interior-point algorithm for nonsymmetric convex conic optimization

نویسندگان

  • Anders Skajaa
  • Yinyu Ye
چکیده

A homogeneous infeasible-start interior-point algorithm for solving nonsymmetric convex conic optimization problems is presented. Starting each iteration from the vicinity of the central path, the method steps in the approximate tangent direction and then applies a correction phase to locate the next well-centered primal-dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed. We prove convergence to -accuracy in O( √ ν log (1/ )) iterations. To improve performance, the algorithm employs a new Runge-Kutta type second order search direction suitable for the general nonsymmetric conic problem. Moreover, quasi-Newton updating is used to reduce the number of factorizations needed, implemented so that data sparsity can still be exploited. Extensive and promising computational results are presented for the p-cone problem, the facility location problem, entropy problems and geometric programs; all formulated as nonsymmetric convex conic optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

On implementing a primal-dual interior-point method for conic quadratic optimization

Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic quadratic optimization problems can ...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Logarithmic barriers for sparse matrix cones

Algorithms are presented for evaluating gradients and Hessians of logarithmic barrier functions for two types of convex cones: the cone of positive semidefinite matrices with a given sparsity pattern, and its dual cone, the cone of sparse matrices with the same pattern that have a positive semidefinite completion. Efficient large-scale algorithms for evaluating these barriers and their derivati...

متن کامل

A Primal Barrier Function Phase I Algorithm for Nonsymmetric Conic Optimization Problems

We call a positive semidefinite matrix whose elements are nonnegative a doubly nonnegative matrix, and the set of those matrices the doubly nonnegative cone (DNN cone). The DNN cone is not symmetric but can be represented as the projection of a symmetric cone embedded in a higher dimension. In [16], the authors demonstrated the efficiency of the DNN relaxation using the symmetric cone represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2015